Thursday, May 10, 2018

Segment Routing with RSVP-Traffic Engineering Tunnels

In the previous post we discussed setting up SR.

SR is now running but its relying on IGP for the shortest path through the SP core. RSVP-TE is used to choose the best route and not necessarily the shortest path. We'll pretend that the connections between XR1 and XR2, XR3 and XR4 are 10 Gbps connections, the rest of the network is 40 Gbps. The goal is to build a TE tunnel that will take the path XR1 > XR5 > XR6 > XR2 > XR3 > XR7 > XR8 > XR4, which will effectively bypass the slower links. There will also be a backup path option that will be able to take the direct XR1 > XR2 > XR3 > XR4 path.

The first thing that needs to be done is enabling MPLS Traffic Engineering, RSVP and enabling OSPF to support MPLS TE for area 0.


XR1 - XR8
router ospf 1
 area 0
  mpls traffic-eng
 !
 mpls traffic-eng router-id Loopback0


XR1
rsvp
 interface GigabitEthernet0/0/0/0.112
  bandwidth 750000
 !
 interface GigabitEthernet0/0/0/0.115
  bandwidth 750000
 !
!
mpls traffic-eng
 interface GigabitEthernet0/0/0/0.112
 !
 interface GigabitEthernet0/0/0/0.115


XR2
rsvp
 interface GigabitEthernet0/0/0/0.112
  bandwidth 750000
 !
 interface GigabitEthernet0/0/0/0.123
  bandwidth 750000
 !
 interface GigabitEthernet0/0/0/0.126
  bandwidth 750000
 !
!
mpls traffic-eng
 interface GigabitEthernet0/0/0/0.112
 !
 interface GigabitEthernet0/0/0/0.123
 !
 interface GigabitEthernet0/0/0/0.126


XR3
rsvp
 interface GigabitEthernet0/0/0/0.123
  bandwidth 750000
 !
 interface GigabitEthernet0/0/0/0.134
  bandwidth 750000
 !
 interface GigabitEthernet0/0/0/0.137
  bandwidth 750000
 !
!
mpls traffic-eng
 interface GigabitEthernet0/0/0/0.123
 !
 interface GigabitEthernet0/0/0/0.134
 !
 interface GigabitEthernet0/0/0/0.137


XR4
rsvp
 interface GigabitEthernet0/0/0/0.134
  bandwidth 750000
 !
 interface GigabitEthernet0/0/0/0.148
  bandwidth 750000
 !
!
mpls traffic-eng
 interface GigabitEthernet0/0/0/0.134
 !
 interface GigabitEthernet0/0/0/0.148


XR5
rsvp
 interface GigabitEthernet0/0/0/0.115
  bandwidth 750000
 !
 interface GigabitEthernet0/0/0/0.156
  bandwidth 750000
 !
!
mpls traffic-eng
 interface GigabitEthernet0/0/0/0.115
 !
 interface GigabitEthernet0/0/0/0.156


XR6
rsvp
 interface GigabitEthernet0/0/0/0.126
  bandwidth 750000
 !
 interface GigabitEthernet0/0/0/0.156
  bandwidth 750000
 !
 interface GigabitEthernet0/0/0/0.167
  bandwidth 750000
 !
!
mpls traffic-eng
 !
 interface GigabitEthernet0/0/0/0.126
 !
 interface GigabitEthernet0/0/0/0.156
 !
 interface GigabitEthernet0/0/0/0.167


XR7
rsvp
 interface GigabitEthernet0/0/0/0.137
  bandwidth 750000
 !
 interface GigabitEthernet0/0/0/0.167
  bandwidth 750000
 !
 interface GigabitEthernet0/0/0/0.178
  bandwidth 750000
 !
!
mpls traffic-eng
 interface GigabitEthernet0/0/0/0.137
 !
 interface GigabitEthernet0/0/0/0.167
 !
 interface GigabitEthernet0/0/0/0.178


XR8
rsvp
 interface GigabitEthernet0/0/0/0.148
  bandwidth 750000
 !
 interface GigabitEthernet0/0/0/0.178
  bandwidth 750000
 !
!
mpls traffic-eng
 interface GigabitEthernet0/0/0/0.148
 !
 interface GigabitEthernet0/0/0/0.178

Now that we have built the TE topology, we can build the unidirectional tunnel from XR1 to XR4 via the path we laid out from above, there should also be another path option that follows the IGP path. The TE tunnel should advertise the TE tunnel as an IGP route.

XR1
explicit-path name SR_TE
 index 1 next-address strict ipv4 unicast 192.0.2.25
 index 2 next-address strict ipv4 unicast 192.0.2.26
 index 3 next-address strict ipv4 unicast 192.0.2.22
 index 4 next-address strict ipv4 unicast 192.0.2.23
 index 5 next-address strict ipv4 unicast 192.0.2.27
 index 6 next-address strict ipv4 unicast 192.0.2.28
 index 7 next-address strict ipv4 unicast 192.0.2.24
!
interface tunnel-te1
 ipv4 unnumbered Loopback0
 autoroute announce
 !
 destination 192.0.2.24
 path-option 5 explicit name SR_TE segment-routing
 path-option 10 segment-routing

RP/0/0/CPU0:XR1#sh ip int br
tunnel-te1                     192.0.2.21      Up              Up       default 

We can see that the tunnel was signaled successfully, if it wasn't the tunnel wouldn't not become up/up.

RP/0/0/CPU0:XR1#show mpls traffic-eng tunnels 1 
Thu May 10 22:34:29.600 UTC


Name: tunnel-te1  Destination: 192.0.2.24  Ifhandle:0x680 
  Signalled-Name: XR1_t1
  Status:
    Admin:    up Oper:   up   Path:  valid   Signalling: connected

    path option 5, (Segment-Routing) type explicit SR_TE (Basis for Setup)
      Protected-by PO index: none
    path option 10,  type segment-routing 
    G-PID: 0x0800 (derived from egress interface properties)
    Bandwidth Requested: 0 kbps  CT0
    Creation Time: Thu May 10 21:31:07 2018 (01:03:23 ago)
  Config Parameters:
    Bandwidth:        0 kbps (CT0) Priority:  7  7 Affinity: 0x0/0xffff
    Metric Type: TE (default)
    Path Selection:
      Tiebreaker: Min-fill (default)
      Protection: any (default)
    Hop-limit: disabled
    Cost-limit: disabled
    Path-invalidation timeout: 10000 msec (default), Action: Tear (default)
    AutoRoute:  enabled  LockDown: disabled   Policy class: not set
    Forward class: 0 (default)
    Forwarding-Adjacency: disabled
    Loadshare:          0 equal loadshares
    Auto-bw: disabled
    Path Protection: Not Enabled
    BFD Fast Detection: Disabled
    Reoptimization after affinity failure: Enabled
    SRLG discovery: Disabled
  History:
    Tunnel has been up for: 01:03:22 (since Thu May 10 21:31:08 UTC 2018)
    Current LSP:
      Uptime: 00:52:10 (since Thu May 10 21:42:20 UTC 2018)
    Prior LSP:
      ID: 2 Path Option: 10
      Removal Trigger: reoptimization completed

  Segment-Routing Path Info (OSPF 1 area 0)
    Segment0[Node]: 192.0.2.25, Label: 16025
    Segment1[Node]: 192.0.2.26, Label: 16026
    Segment2[Node]: 192.0.2.22, Label: 16022
    Segment3[Node]: 192.0.2.23, Label: 16023
    Segment4[Node]: 192.0.2.27, Label: 16027
    Segment5[Node]: 192.0.2.28, Label: 16028
    Segment6[Node]: 192.0.2.24, Label: 16024
Displayed 1 (of 1) heads, 0 (of 0) midpoints, 0 (of 0) tails
Displayed 1 up, 0 down, 0 recovering, 0 recovered heads

The MPLS TE tunnel output shows that SR is being used to build the tunnel, meaning that SR labels will be used and not RSVP-TE which would be labels starting at 24000 and above. The current path being leveraged is option 5, the explicit path, which is defined above. 

RP/0/0/CPU0:XR1#sh route 192.0.2.24
Thu May 10 22:35:40.545 UTC

Routing entry for 192.0.2.24/32
  Known via "ospf 1", distance 110, metric 4, labeled SR, type intra area
  Installed May 10 21:31:09.200 for 01:04:31
  Routing Descriptor Blocks
    192.0.2.24, from 192.0.2.24, via tunnel-te1
      Route metric is 4
  No advertising protos. 

Expanding the route to XR4's loopback, we see that the path now follows the TE1 path and is using a labeled SR path.

RP/0/0/CPU0:XR1#sh cef 192.0.2.24
Thu May 10 22:35:56.954 UTC
192.0.2.24/32, version 46, internal 0x1000001 0x1 (ptr 0xa12b3a74) [1], 0x0 (0xa127f584), 0xa20 (0xa150d320)
 Updated May 10 21:31:09.460
 Prefix Len 32, traffic index 0, precedence n/a, priority 3
   via 192.0.2.24/32, tunnel-te1, 7 dependencies, weight 0, class 0 [flags 0x0]
    path-idx 0 NHID 0x0 [0xa0f164f0 0xa0f16154]
    next hop 192.0.2.24/32
    local adjacency
     local label 24007      labels imposed {ImplNull}

Looking at the CEF table we can see label 24007 was allocated as adjacency SID since the TE1 tunnel is a new tunnel and therefore a label needs to be allocated.

RP/0/0/CPU0:XR1#sh mpls forwarding labels 24007
Thu May 10 22:50:33.174 UTC
Local  Outgoing    Prefix             Outgoing     Next Hop        Bytes       
Label  Label       or ID              Interface                    Switched    
------ ----------- ------------------ ------------ --------------- ------------

24007  Pop         192.0.2.24/32      tt1          192.0.2.24      0   

We can prove that by looking at what label 24007 was applied to, in this case it is the TE tunnel.

Once the tunnel is up, re-optimization maybe needed to take the explicit path.

RP/0/0/CPU0:XR1#mpls traffic-eng reoptimize 1

Now that we have a TE tunnel up and running, the routing table shows that traffic towards XR4 will take the TE tunnel. Let's do a trace from XR1 to XR4 and see what happens.

RP/0/0/CPU0:XR1#traceroute 192.0.2.24 source 192.0.2.21 num
Thu May 10 22:36:40.701 UTC

Type escape sequence to abort.
Tracing the route to 192.0.2.24

 1  100.64.115.15 [MPLS: Labels 16026/16022/16023/16027/16028/16024 Exp 0] 139 msec  119 msec  109 msec 
 2  100.64.156.16 [MPLS: Labels 16022/16023/16027/16028/16024 Exp 0] 119 msec  109 msec  149 msec 
 3  100.64.126.12 [MPLS: Labels 16023/16027/16028/16024 Exp 0] 119 msec  119 msec  119 msec 
 4  100.64.123.13 [MPLS: Labels 16027/16028/16024 Exp 0] 129 msec  109 msec  119 msec 
 5  100.64.137.17 [MPLS: Labels 16028/16024 Exp 0] 109 msec  119 msec  119 msec 
 6  100.64.178.18 [MPLS: Label 16024 Exp 0] 119 msec  129 msec  109 msec 
 7  100.64.148.14 109 msec  *  109 msec 

We can see that the TE tunnel is being taken with the 7 SR label stack. This stack is encoded as it hits the ingress PE.

R1#ping 192.0.2.2 source lo0
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 192.0.2.2, timeout is 2 seconds:
Packet sent with a source address of 192.0.2.1 
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 80/86/90 ms

R1#traceroute 192.0.2.2 source lo0 num
Type escape sequence to abort.
Tracing the route to 192.0.2.2
VRF info: (vrf in name/id, vrf out name/id)
  1 100.64.101.11 19 msec 7 msec 10 msec
  2 100.64.115.15 [MPLS: Labels 16026/16022/16023/16027/16028/16024/24004 Exp 0] 131 msec 133 msec 126 msec
  3 100.64.156.16 [MPLS: Labels 16022/16023/16027/16028/16024/24004 Exp 0] 143 msec 134 msec 123 msec
  4 100.64.126.12 [MPLS: Labels 16023/16027/16028/16024/24004 Exp 0] 143 msec 129 msec 124 msec
  5 100.64.123.13 [MPLS: Labels 16027/16028/16024/24004 Exp 0] 140 msec 133 msec 126 msec
  6 100.64.137.17 [MPLS: Labels 16028/16024/24004 Exp 0] 141 msec 138 msec 124 msec
  7 100.64.178.18 [MPLS: Labels 16024/24004 Exp 0] 135 msec 132 msec 128 msec
  8 100.64.148.14 [MPLS: Label 24004 Exp 0] 130 msec 133 msec 127 msec
  9 100.64.103.2 133 msec *  136 msec


We see that in the above ping worked, but that doesn't showcase the SR TE output. The traceroute showcases the SR TE stack. The screenshot shows that the entire stack is encoded as traffic enters the SP core.

Thanks for stopping by!
Rob Riker, CCIE #50693

No comments:

Post a Comment